
Open Forum

28 CROSSTALK The Journal of Defense Software Engineering September 2003

Just as beauty is in the eye of the beholder,
what constitutes a defect is guided by

the personal biases and the organizational
position of the person making the evalua-
tion. Is a bug found by a developer during
unit testing a reportable defect, or just a
normal, non-quantifiable part of the devel-
opment process?

To some (many) developers, the latter
is true. Their contention may be that the
whole point of unit testing is to uncover
problems; if they were forced to docu-
ment every bug as a defect, the job would
never be accomplished on time and on
budget. However, if a process engineer
were asked the same question, he or she
might suggest that the uncovering of a
problem during testing is an opportunity
to examine the cause of the problem, to
determine in what phase the defect was
introduced, and to reveal what earlier
process failed to find the defect.

Management, in this scenario, is at
cross-purposes. On one hand it has sched-
ule obligations and does not want to bur-
den its developers with doing extra paper-
work. On the other hand, a process savvy
management is aware of the economy of
finding defects as early in the development
life cycle as possible and thinks any oppor-
tunity for process improvement should be
pursued.

A seemingly more straightforward sce-
nario is to document defects at peer
review meetings. These types of reviews
can take many forms, but their basic task
is to have a product (requirements, design,
code, document, etc.) reviewed by a group
of interested and knowledgeable individu-
als. The output of peer review meetings is
a list of action items or defects that must
be addressed or fixed in a timely fashion.
Even in organizations that have defined
peer review processes, there are often
areas of contention when recording
defects. Many times the line that divides
the definition of action items versus

defects is vague, and defects are incorrect-
ly classified as action items. In other cases,
several discovered defects, which seem
similar in nature, are grouped under one
defect identifier. While this seems expedi-
ent, valuable information required for
defect causal analysis is being lost.

Defect Management
Impediments
You might wonder why it is so difficult to
get buy-in from most developers and
many managers if all the software process
models are treating defects as useful and

even desirable byproducts of develop-
ment. The problem lies in the definition of
the term defect that is found in most ref-
erence sources. As a prime example,
Webster’s Dictionary3 defines a defect as
“a blemish; fault, flaw.” It is difficult to see
the positive value in such a definition. Can
you imagine a teacher of a poorly per-
forming class meeting with the principal
and being congratulated for finding all the
defects in their student’s test papers? Or

can you imagine the president of an auto-
mobile company who gives bonuses to his
engineering staff after they have failed
several crash-test categories? We have
been programmed to equate defects as
failures against the developer, teacher,
manufacturer, etc. Is it any wonder that a
developer would be reluctant to admit
finding defects in his or her work product?

Even in the best-case scenario in
which developers record defects during
peer reviews and testing phases, there are
practices employed in the development
life cycles that make the use of defects, as
a quality measure, questionable. Among
these is the correcting of problems and
errors prior to the formal peer review
processes. Commonly during all life-cycle
phases, regular discussions occur between
developers and system and test engineers.
In many cases, these discussions lead to
changes in documentation, design, and/or
code. These changes are, in the majority of
cases, not formally documented. By the
time formal peer reviews for these prod-
ucts are conducted, most of the question-
able details have been resolved leading to
few if any defects uncovered at the
reviews.

From a process quantitative perspec-
tive, little can be learned from these
reviews. All the pre-review defect infor-
mation has been lost due to the lack of
documentation; defects found at the
reviews, which potentially could be used
to provide insight into the capability of
the review process, are minimal. The sta-
tistical process charts tracking these
reviews over time may resemble a flat-line
electrocardiogram with little or no defect
variation. Figure 1 shows the results of
reviews that have been pre-reviewed with-
out defects being documented. Figure 2
shows a normal distribution of defects
over time (note: points are almost equally
above and below control limit midline).

Testing processes present their own

Defect Management: A Study in Contradictions

Raymond Grossman
L-3 Communication Systems-East

In today's defense business environment, many software and system development contracts require mandatory compliance with
standardized software or integrated process models such as ISO 9000, the Capability Maturity Model® (CMM®) or CMM
IntegrationSM. One component that all these models have in common is the use of defects as a measure of process and prod-
uct quality. Entire key process areas1 and process areas2 are devoted to defect prevention and defect causal analysis and reso-
lution. With such a reliance on this metric as a key indicator, it would seem that the definition and interpretation of the term
defect would be universally understood and accepted. However, nothing could be further from the truth.

“We have been
programmed to equate

defects as failures
against the developer,
teacher, manufacturer,

etc. Is it any wonder that
a developer would be

reluctant to admit finding
defects in his or her

work product?”

Defect Management: A Study in Contradictions

September 2003 www.stsc.hill.af.mil 29

unique impediments to accurate defect
reporting. In the traditional Waterfall Model
for software development, unit testing is the
process immediately succeeding coding. It
has the potential of removing a great deal
of defects and uncovering weaknesses in
earlier life-cycle processes. Yet, in many
organizations, few or no defect measure-
ments are recorded and analyzed. Usually,
the only quantitative measures that can be
determined are the number of passed and
failed unit tests.

Even in organizations that do capture
unit test defects, the documentation is
vague and usually does not include casual
analysis parameters that would pinpoint
the life-cycle event that failed to detect the
defect that was found during the unit test.
Once again the prime culprit for the lack
of defect reporting is fear of retribution
by the developer or team leader. Unlike
other tests such as system-level testing, the
individual who created the code normally
performs unit testing. To report defects
that are found during unit testing is, in
their minds at least, an admission of
incompetence.

A second but no less common expla-
nation for the lack of defect reporting is
time. If done diligently, it takes some effort
to analyze each defect found, to determine
why it was introduced, and to specify
which prior process failed to find it.

While both of these explanations are
understandable, it still makes the unit test
process far less useful as a quality tool.
The same problems may be found in the
software integration phase in those com-

panies where the developer of the code
also writes the integration test procedures
and performs the tests. In some organiza-
tions, however, independent test groups
perform this phase so defect reporting
may be more accurate and complete.

While the usefulness of defect man-
agement analysis is compromised by the
sins of omission, as in the non-reporting
of defects illustrated in the previous cases,
equally damaging is the reporting of inac-
curate defect information. Bad defect
reporting leads to the phenomenon some-
times known in the computing world as
garbage in, garbage out. Simply put, if the
data reported is bad, the analysis and
resulting conclusions will be wrong as
well.

The reasons behind the incorrect
reporting of defects may range from
expedient reporting of defects on manda-
tory forms to the misunderstanding of
defect definitions (as discussed earlier in
this article). In the process-oriented envi-
ronment found in most defense organiza-
tions today, developers are required by
their organization’s standard defined
processes to transcribe defects at various
life-cycle milestones. Pressured by sched-
ules and wary of possible management
criticism, some developers may choose to
fill in the required defect fields with infor-
mation that does not necessarily reflect
the true nature of the problem and/or
cause. The resultant analysis may lead to
incorrect conclusions about the causes of
the defects and thus dilute or eradicate any
benefit derived from the process.

Utilizing Defects for Quality
and Process Improvement
Up until this point, this article has painted
a rather bleak picture of the utility of
defects as a quality measure. Typically,
metrics such as peer review defect density will
yield little benefit as a measurement of
quality if only small numbers of defects
are being reported during the process.
However, there are still process improve-
ment opportunities to be gained by deter-
mining the root causes4 of those defects
that are reported during the software
development life cycles.

If a particular phase seems more
prone to producing defects, the related
process may have to be reviewed and
subsequently updated or changed. This
idea can be applied to the examples pre-
sented earlier in order to show the possi-
ble benefits of finding and analyzing
defects. If the school teacher with the
poorly performing class uses those nega-
tive test results as a basis for changing his
or her style or teaching methods to be
more in compliance with the students’
special needs, the performance of the
students may improve. Similarly, if the
poor crash-test results in the automobile
company cause the improvement of the
related quality assurance methods, future
test results will most likely be positively
affected.

Thus far, only defects found during
the software development life-cycle
processes have been considered. Once a
product has been put under configuration
management and delivered to the cus-

35

30

25

20

15

10

5

0
Jan 2003 Feb 2003 Mar 2003 Apr 2003 May 2003 Jun 2003 Jul 2003

(X, Moving R) Control Chart for: Defect Distribution

UCL (1) LCL (1)

Figure 1: Distribution of Review Defects with Pre-Review Defects not Documented

35

30

25

20

15

10

5

0
Jan 2003 Feb 2003 Mar 2003 Apr 2003 May 2003 Jun 2003 Jul 2003

(X, Moving R) Control Chart for: Defect Distribution

CL (9)()

LCL (0)

UCL (34.70922)

Figure 2: Normal Distribution of Review Defects

Open Forum

30 CROSSTALK The Journal of Defense Software Engineering September 2003

tomer (internal or external company),
defects are uncovered during field-testing,
system testing, and normal customer
usage. These defects are then reviewed,
verified, and categorized and submitted
back to the development team for resolu-
tion. These defects differ in several ways
from those discovered during the develop-
ment life cycle.

First, the reporting reluctance the
developer wrestled with during the devel-
opment life cycle is eliminated. The defect
has been found and now must be dealt
with. In the same vein, the time-to-document-
the-defect dilemma has been removed from
the developer’s plate. Time and budget
have been allotted to analyze and fix the
defect. Finally, the fear of retribution is, if
not eliminated, made less significant. The
defect exists and, no matter how it was
caused or whose fault it was it now must be
corrected.

The key benefits of post-development
cycle defects are that they can be used as
the basis of product and process quality
measurements as well as for process
improvement identifiers. Quality metrics,
such as product defect density, can be cal-
culated from the post-development cycle
defects and used as a basis of comparison
against other projects in order to set prod-
uct goals and to predict future budgets
and schedules. Performing causal analysis
on post-development cycle defects will
enable the process team to determine the
development cycle processes’ defect inser-
tion, removal, and leakage rates and make
the appropriate process adjustments.

The Team Approach to
Improving Defect Management
In an effort to assist developers in distin-
guishing true defects from action items
and to expedite the proper use of tech-
niques such as root-cause analysis and
quantitative process management, some
organizations have established defect
analysis teams (DATs). These teams, usu-
ally consisting of members of the organi-
zation’s Software Engineering Process
Group, are tasked with reviewing the
defect documentation generated by devel-
opers during the various development
processes.

DATs examine questionable items
such as missing fields, inconsistent or
contradictory defect descriptions, or flag
other anomalies. Interviews with the
appropriate developers are held where the
team’s findings are discussed. At these
meetings, the developer and the team
review defect definitions and related
causal analysis concepts, and the defect

documentation is completed to all partic-
ipants’ satisfaction. At times, even pre-
sumably correctly completed documents
are discussed with developers in an effort
to reinforce the defect management con-
cepts.

In most organizations employing this
teaming technique, it is the goal of the
DATs to review selected documentation
from every appropriate software project
in the organization. The employment of
DATs helps foster more consistent and
complete defect reporting and may act as
a catalyst to the institutionalization of
defect management techniques through-
out the organization.

Conclusion
In the best of all possible worlds where
no schedules, egos, or calendars exist,
defect management would be an extreme-
ly useful and informative process in all
phases of software development and
maintenance. However, due to the rea-
sons mentioned in this article, the utility
of defects is diminished during the soft-
ware development processes. Is this an
insurmountable problem with no correc-
tive actions possible? The answer largely
depends on factors outside the control of
the software developer.

Training must be given and constantly
reinforced to change the perception of
defect reporting being purely negative
and self-indicting. The value of uncover-
ing defects and concepts of causal analy-
sis must be part of this training.
Management must also be made aware of
the cost and maintenance savings oppor-
tunities in defect removal in the earliest
possible life-cycle phase. The employ-
ment of DATs is an effective way of
mentoring and reinforcing defect report-
ing concepts and processes. Finally, but
most importantly, management must
assure developers that it supports and

encourages defect identification and doc-
umentation.

While these suggestions are few, they
may look daunting to organizations who
have long histories of treating defects
purely as problems and to developers who
believe that their performance reviews are
negatively affected by the number of
defects found in their products.◆

Notes
1. This is Capability Maturity Model®

nomenclature.
2. This is Capability Maturity Model

Integration nomenclature.
3. PSI & Associates Inc. New Webster’s

Dictionary & Thesaurus. 1991.
4. The root cause is the identified reason

for the presence of a defect or prob-
lem. The most basic reason, which if
eliminated, would prevent recurrence.
<www.isixsigma.com/dictionary/
Root_Cause>.

About the Author

Raymond Grossman
is a senior software
process engineer with
L-3 Communications-
East in Camden, N.J.
He is responsible for

creating and implementing a metrics
program and in helping the organiza-
tion transition to the Capability
Maturity Model® Integration model.
Grossman has more than 30 years
experience in all phases of software
development, including project man-
agement. For the past seven years, he
has been involved in process improve-
ment and software measurements and
metrics, and has been a key player in
several Capability Maturity Model
(CMM) evaluations. Grossman was part
of a team that helped his former organ-
ization achieve a CMM Level 5 rating.
He has a bachelor’s degree in engineer-
ing from the City College of New York
and has been awarded Certified
Professional Management Credentials
from James Madison University.

L-3 Communication Systems–East
1 Federal St.
Camden, NJ 08103
Phone: (856) 338-6220
Fax: (856) 338-2425
E-mail: raymond.grossman@

L-3com.com

“The reasons behind the
incorrect reporting of

defects may range from
expedient reporting of
defects on mandatory

forms to the
misunderstanding of
defect definitions.”

